

Crylink LBO NLO Crystals

For high-power lasers

www.crylink.com

Crylink LBO · Superior Quality

Crylink uses flux lifting to grow LBO crystals, and currently grows LBO crystals in blanks up to 4.8kg in weight, providing large-size LBO crystals.

Crylink LBO crystals not only have high damage threshold, wide transparency range, and efficient frequency conversion capability, but also lead the industry in several key performance indicators.Crylink large-size LBO crystals satisfy the requirements of ultra-fast and ultra-intense laser technology for nonlinear crystal devices with ultra-large aperture and high damage threshold, which will promote the development of ultra-high-power and high-energy laser technology.

Crylink BBO · Weak Absorption Testing

Crylink used a weak absorption tester to perform weak absorption testing on LBO crystals, which self-absorbed <20ppm@1064nm.

The left image shows the LBO bulk weak absorption test results at 1064nm.

Crylink LBO · Coating

Crylink utilizes advanced Ion-Assisted Deposition (IAD) coating technology to ensure high quality and ultra-high durability of LBO crystal surface coatings.

Test conditions:

Wavelength: 1064nm Test result: Pulse width: 5ns Spot distribution: 425.3 um Linear polarized light Sample testing angle: 0°

+86-21-66566068 Building 7, No. 718, Baoqi Road, Baoshan District, Shanghai, China

Crylink LBO · Quality Control Tests

Crylink has adopted a series of strict testing measures to ensure that the quality and performance of LBO crystals meet the standards.

•Internal quality testing of LBO crystals using a 20mw green laser;

•Viewing the surface finish of the crystal through a microscope;

•Flatness, wavefront, and parallelism detection using ZYGO laser interferometer;

•Surface roughness inspection with Atometrics AM-7000 white light interferometer;

Through these comprehensive and precise inspection methods, the high quality of LBO crystals is effectively guaranteed. The figure on the right shows the test results of LBO finish and transmitted wavefront.

Crylink LBO · Spectra

The SHG tuning curves of LBO crystal

Scan the QR code and go to the website to learn more about LBO parameters

www.crylink.com sales@crylink.com +86-21-66566068

Building 7, No. 718, Baoqi Road, Baoshan District, Shanghai, China

Crylink LBO · Parameters

Physical and Chemical Characteristics								
Attribute	Value							
Chemical Formula	LiB ₃ O ₅							
Crystal Structure	Orthorhombic, Space group Pna2 ₁ , Point group mm2							
Lattice Parameters	a=8.4473Å ,b=7.3788Å, c=5.1395Å, Z=2							
Mass Density	2.47 g/cm ³							
Mohs Hardness	6							
Melting Point	About 834°C							
Coefficient of Thermal Conductivity	3.5W/m/K							
Optical and Nonlinea	ır Opti	cal Properties						
Attribute		Value						
SHG Phase Matching	9	551–2600nm (Type I); 790–2150nm (Type II)						
		deff (I)=d ₃₂ cosΦ (Type I, XY plane)						
NLO Coefficient		deff (I)=d ₃₁ cos2θ+d ₃₂ sin2θ (Type I, XZ plane)						
		deff (II)=d ₃₁ cosθ (Type II, YZ plane)						
		deff (II)=d ₃₁ cos20+d ₃₂ sin20 (Type II, XZ plane)						
Non-vanished NLO Susceptibilities		d ₃₁ =1.05±0.09pm/V						
		d ₃₂ =-0.98±0.09pm/V						
		d ₃₃ =0.05±0.006pm/V						
Therm-optic Coefficient (/°C, λ in μm)		dn _x /dT=-9.3*10 ⁻⁶						
		dn _y /dT=-13.6*10 ⁻⁶						
		dn _z /dT=(-6.3-2.1λ)*10 ⁻⁶						
Angle Acceptance		6.54mrad·cm (Ф, Туре I, 1064 SHG)						
		15.27mrad·cm (θ, Туре II, 1064 SHG)						
Transparency Range		160-2600nm						
Absorption Coefficients		<0.1%/cm @1064nm; <0.3%/cm @532nm						
		n _x ² =2.454140+0.011249/(λ ² -0.011350)-						
		$0.014591\lambda^2$ - $6.60 \times 10^{-5}\lambda^4$						
Sellmeier Equations		n_y^2 =2.539070+0.012711/(λ^2 -0.012523)-						
(λ in μm)		$0.018540\lambda^{2}+2.0\times10^{-4}\lambda^{4}$						
		$n_z^2 = 2.586179 + 0.013099/(\lambda^2 - 0.011893) -$						
		0.017968λ ² -2.26×10 ⁻⁴ λ ⁴						

Experimental Values of NCPM Temperature								
Interaction Wavelength [µm]	T[°C]							
Along X-axis, SHG, Type I								
1.547⇒0.7735	117							
1.46⇒0.73	50							
1.252⇒0.626	3.5							
1.25⇒0.625	-2.9							
1.215⇒0.6075	21							
1.211⇒0.6055	20							
1.206⇒0.603	24							
1.2⇒0.6	24.3							
1.15⇒0.575	61.1							
1.135⇒0.5675	77.4							
1.11⇒0.555	108.2							
1.0796⇒0.5398	112							
1.0642⇒0.5321	148/148.5/149/149.5/151							
1.047⇒0.5235	166.5/167/172/175/176.5/180							
1.025⇒0.5125	190.3							
SFG, Type I								
1.908+1.0642⇒0.6832	81							
1.444+1.08⇒0.6179	23							
1.135+1.0642⇒0.5491	112							
1.547+0.7735⇒0.5157	141							
DFG, Type I								
0.532-0.8⇒1.588	135							
Along Z-axis, SHG, Type II								
1.342⇒0.671	35							
1.3⇒0.65	46							

Scan the QR code and go to the website to learn more about LBO parameters

Crylink LBO · Standard Products

Modle	W (mm)	H (mm)	L (mm)	Туре	θ (°)	φ (°)	Coating	Application
LBO	3	3	10	Type I	90	11.6	AR/AR @ 1064 + 532 nm	SHG@1064 nm
LBO	3	3	15	Type I	90	11.6	AR/AR @ 1064 + 532 nm	SHG@1064 nm
LBO	25	25	20	Type I	90	11	AR/AR @ 1064 + 532 nm	SHG@1064 nm
LBO	3	3	10	Type II	42.2	90	AR/AR @ 1064 + 532/355 nm	THG@1064 nm
LBO	6	6	0.9	Type I	90	13.8	AR/AR @ 1030 + 515 nm	SHG@1030 nm
LBO	6	6	1	Туре I	90	13.8	AR/AR @ 1030 + 515 nm	SHG@1030 nm
LBO	3	3	10		90	0	AR/AR @ 1064 + 532 nm	NCPM SHG@1064nm, T=149°C
LBO	3	3	60		90	0	AR/AR @ 1064 + 532 nm	NCPM SHG@1064 nm, T = 149°C

Note: Partially standard products, contact sales for more information sales@crylink.com

on about I BO ci

info

Note: All information and specifications in this product book are subject to change without notice. We reserve the right to make improvements and changes in our products and services. All test data is for reference only and actual performance may vary depending on specific applications and conditions of use.

