Cr:YAG

Cr:YAG

Cr: YAG crystal, also known as chromium doped yttrium aluminum garnet crystal, with the chemical formula of Cr: Y3Al5O12, is a relatively excellent Q-switched crystal product. It can be used not only as a Q-switch, but also as a gain medium because of its excellent physical and chemical properties. It is widely used in the field of passively Q-switched lasers of laser rangefinders, lidar and LIBS systems. Cr: YAG has the advantages of chemical stability, durability, UV resistance, good thermal conductivity, high damage

threshold (>500 mw/cm2) and simple operation. It is surpassing traditional materials such as LIF and organic dyes. Cr: YAG is an excellent and widely used electro-optical material for passive Q-switched (laser diode or lamp pumped) Nd: YAG, Nd: YLF, Nd: YVO4 and other 0.8~1.2 μm Nd (or Yb) doped lasers. It is also an active medium for CW, pulse or self-mode-locked tunable NIR solid-state lasers. The tunable range is 1340 – 1580 nm and the working wavelength is 950-1100 nm.

The absorption saturation at 1060 nm band can be used in small Nd: YAG oscillators with flash lamp or laser diode pump, instead of dye or lif:f central passive Q-switch, so that Cr4+: YAG crystal can achieve self mode locking (KML) state. It provides an opportunity to build a laser source with a pulse duration shorter than 100 fs at 1450-1580 nm.

FEATURES

  • Radiation stability
  • High thermal conductivity
  • High damage threshold (> 500 MW/cm2)
  • Excellent physical and chemical properties

Physical and Chemical Properties

AttributeNumerical
Chemical FormulaCr4+:Y3Al5O12
Crystal Structurecubic – la3d
Lattice Constant Å12.01
Orientation[100] or [110] < ±0.5°
Mass Density4.56 g/cm3
Mohs Hardness8.5
Young's Modulus335 GPa
Tensile Strength2 GPa
Melting Point1970°C
Thermal Conductivity0.1213
Specific Heat/(J·g-1·K-10.59
Thermal Expansion/(10-6 /°C @ 25°C)7.8 <111>
7.7 <110>
8.2 <100>
Thermal Shock Resistance Parameters800 W/m
Extinction Ratio25dB
Poisson Ratio0.25
Refractive Index @ 1064 nm1.83
Charge Compensated IonCa2+, Mg2+

Optical Properties

AttributeNumerical
Optical Density0.1 to 0.8
Fluorescence Lifetime3.4μs
Concentration0.5 mol % ~ 3 mol %
Emission Wavelength1350 nm ~ 1600 nm
Absorption Coefficient 1.0 cm-1~ 7 cm-1
Ground State Absorption Cross-section4.3×10-18 cm2
Emission Absorption Cross-section8.2×10-19 cm2
Transmission10% to 90%
CoatingAR≤ 0.2% @1064nm
Damage Threshold> 500 MW / cm2

Polishing

AttributeNumerical
Orientation Tolerance< 0.5°
Thickness/Diameter Tolerance±0.05 mm
Surface Flatness<λ/8@632 nm
Wavefront Distortion<λ/4@632 nm
Surface Quality5-Oct
Parallelism10〞
Perpendicularity
Clear Aperture>90%
Chamfer<0.1×45°
HR Coating<= 0.2% (@ 1340nm)
Biggest Size2*2-15*15 mm×20mm

Spectrum

Cr YAG Q-Switched crystal emission spectrum CRYLINKCr YAG Q-Switched crystal absorption spectrum CRYLINK
Cr YAG Q-switched crystal Other spectral1 CRYLINKCr YAG Q-Switched Crystal Other spectral2 CRYLINK

References

[1]  Saiki T ,  Nakatsuka M ,  Fujioka K , et al. Cross-relaxation and spectral broadening of gain for Nd/Cr:YAG ceramic lasers with white-light pump source under high-temperature operation[J]. Optics Communications, 2011, 284(12):2980-2984.
[2]  Saiki T ,  Funahashi K ,  Motokoshi S , et al. Temperature characteristics of small signal gain for Nd/Cr:YAG ceramic lasers[J]. Optics Communications, 2009, 282(4):614-616.
[3]  Wu Y ,  Jiang L ,  Qiu F , et al. Fabrication of transparent Yb,Cr:YAG ceramics by a solid-state reaction method[J]. Ceramics International, 2006, 32(7):785-788.
[4] Jiying, Peng, Yi, et al. Passively Q-switched mode locking in a compact Nd:GdVO4/Cr:YAG self-Raman laser[J]. Optics Communications, 2012, 285(24):5334-5336.
[5]  Peng J Y ,  Zheng Y ,  Shi Y X , et al. Passively Q-switched a -cut Nd:GdVO 4 self-Raman laser with Cr:YAG[J]. Optics & Laser Technology, 2012, 44( 7):2175-2177.
[6] A low viscosity slurry system for fabricating chromium doped yttrium aluminum garnet (Cr:YAG) transparent ceramics[J]. Journal of the European Ceramic Society, 2015, 35(14):S095522191530025X.
[7]  Yi X ,  Zhou S ,  Chen C , et al. Fabrication of Ce:YAG, Ce,Cr:YAG and Ce:YAG/Ce,Cr:YAG dual-layered composite phosphor ceramics for the application of white LEDs[J]. Ceramics International, 2014, 40(5):7043-7047.
[8]  Honda Y ,  Motokoshi S ,  Jitsuno T , et al. Temperature dependence of optical properties in Nd/Cr:YAG materials[J]. Journal of Luminescence, 2014, 148:342-346.
[9] Lin, Hong-Yi, Sun, et al. Comparative study between Nd:GYSGG and Nd:YAG lasers passively Q-switched by a Cr:YAG crystal[J]. Journal for Light and Electronoptic, 2018.
[10]  Villafana-Rauda E , R Chiu,  Mora-Gonzalez M , et al. Dynamics of a Q-switched Nd:YVO4/Cr:YAG laser under periodic modulation[J]. Results in Physics, 2018, 12.
[11]  Chen X ,  Lu T ,  Wei N , et al. Fabrication and photoluminescence properties of Cr:YAG and Yb,Cr:YAG transparent ceramic[J]. Optical Materials, 2015, 49:330-336.
[12]  Cafiso S ,  Ugolotti E ,  Schmidt A , et al. Sub-100-fs mode-locking of the Cr:YAG laser using monolayer graphene saturable absorber[C]// Cleo. IEEE, 2013.
[13]  Bernard J E ,  Alcock A J ,  Chepurov S V , et al. Measurement of the frequency of acetylene transitions at 1540 nm with a mode-locked Cr:YAG laser[C]// Leos Summer Topical Meetings. IEEE, 2005.
[14]  Chen J C ,  Lo C Y ,  Huang K Y , et al. Mapping of Cr ions and refraction index profile in Cr:YAG crystal fiber with double-cladding structure[J]. Annals of Physical and Rehabilitation Medicine, 2004.
[15]  Jaspan M A ,  Welford D ,  Xiao G , et al. Atypical behavior of Cr:YAG passively Q-switched Nd:YVO4 microlasers at high-pumping rates[J]. Filtration Industry Analyst, 2000.
[16]  Lin J H , MD Wei,  Hsu H H , et al. High peak power output of a diode-pumped Q-switched and mode locked Nd:LuVO4 with Cr:YAG saturable absorber[C]// Conference on Lasers & Electro-optics-pacific Rim. IEEE, 2007.
[17]  Dong J ,  Shirakawa A ,  Ueda K I , et al. Composite Yb:YAG/Cr:YAG ceramics self-Q-switched laser[C]// Conference on Lasers & Electro-optics. IEEE, 2008.
[18]  Sorokin E ,  Naumov S ,  Kalashnikov V L , et al. Spectral broadening of 50 fs Cr:YAG pulses around 1.5 /spl mu/m in the tapered fiber.  2003.
[19] D Welford,  Jaspan M A . Single-frequency operation of a Cr:YAG laser from 1332 to 1554 nm[J]. Journal of the Optical Society of America B, 2004, 21(12):2137-2141.
[20]  Saiki T ,  Imasaki K ,  Motokoshi S , et al. Oscillation Property of Disk-Type Nd/Cr:YAG Ceramic Lasers with Quasi-Solar Pumping[C]// Conference on Lasers & Electro-optics. American Institute of Physics, 2006.
[21]  Lo C Y ,  Tu S Y ,  Huang K Y , et al. Fused-silica-clad Cr:YAG fiber. IEEE, 2003.
[22] Tsunekane, Taira. High temperature operation of passively Q-switched, Cr:YAG/Nd:YAG micro-laser for ignition of engines. IEEE, 2009.
[23]  Cho W B ,  Schmidt A ,  Sun Y C , et al. Carbon-Nanotube Mode-Locked Cr:YAG Laser[C]// Lasers & Electro-optics. IEEE, 2010.

If you are intereted in Cr:YAG, please click the button below to enquire or ask for a samplel.

Related article(s) with Cr:YAG:

There is no related article with this product, please visit our articles page to find out more.

Related case study with Cr:YAG:

Related solution(s) with Cr:YAG:

Related video(s) with Cr:YAG:

There is no related video(s), please visit videos page to find out more.

Scroll to Top