Nd:YVO<sub>4</sub>” class=”wp-image-830″/></div><div class=

Nd: YVO4 crystal product is also known as neodymium-doped gadolinium vanadate crystal. It is a laser crystal product with excellent comprehensive performance for making semiconductor-pumped solid-state lasers. Nd: YVO4 crystal is widely used in many fields, such as machinery, material processing, spectroscopy, wafer testing, display, medical testing, laser printing, data storage, etc.

The product has the characteristics of good thermal conductivity, large stimulated emission cross-section, high laser damage threshold, absorption bandwidth, and absorption peak of about 808nm.

Because of these advantages, small crystals can make smaller laser devices. Another feature of Nd: YVO4 crystal is that it is uniaxial, emitting linearly polarized light. Combined with frequency doubling crystal, all solid-state lasers with green, blue, and red wavelengths can be realized.

Now, Nd: YVO4 laser has been widely used in many fields, such as machinery, material processing, spectroscopy, chip inspection, display, medical testing, laser printing, data storage, etc.

Nd: YVO4 diode-pumped solid-state lasers are rapidly replacing traditional water-cooled ion lasers and lamp-pumped lasers in the market, especially in miniaturization and single longitudinal analog output. It can be used in laser diode-pumped all solid-state (DPSS) microlasers, lidar, and remote-sensing satellite products.

Features of Nd: YVO4 crystal:

  • Uniaxial crystal
  • Absorb the bandwidth
  • High damage threshold
  • High absorption coefficient
  • High absorption coefficient
  • Stimulated radiation cross section
  • Good physical and optical properties

Material Specifications

MaterialNd: YVO4
The Concentration of Tolerance(atm%)0.5%, 1.1%, 2.0%, 3.0%
OrientationA-cut or C-cut
Surface Finish10/5 scratches/depressions consistent with MIL-O-13830 B
Wavefront Distortion<λ/8 @633nm
Surface Flatnessλ/10@ 633 nm
Clear Aperture>90%
Size Tolerance(W±0.1mm)x(H±0.1mm)x(L+0.2/-0.1mm) (L<2.5mm)
(W±0.1mm)x(H±0.1mm)x(L+0.5/-0.1mm) (L≥2.5mm)
Angle Tolerance≤0.5°
Damage Threshold[GW / cm2]>1 for 1064nm, TEM00, 10ns, 10Hz (AR-coating)

Physical and Chemical Properties

Crystal StructureZircon Quadriboid, Space GroupD4h-I4 / amd
Lattice Constanta=b=7.12, c=6.29
Melting Point1825
Thermal Conductivity/(W·m-1·K-1 @ 25°C)5.2
Thermal-optical Coefficientdno/dT=8.5×10-6/K; dne/dT=2.9×10-6/K
Thermal Expansion Rate/(10-6·K-1 @ 25°C)a = 4.43, c= 11.4
Mohs Hardness4~5

Optical and Spectral Properties

Laser Wavelength1064nm, 1342nm
Polarized Laser Emissionπ polarization; Parallel to the optical axis (c axis)
Pump Wavelength808nm
Intrinsic Loss0.02cm-1@1064nm
Diode Pumps Light to Light Efficiency>60%
Emission Cross Section25×10-19cm2@1064nm
Fluorescence Lifetime90 μs (About 50 μs for 2 atm % Nd doping) @ 808 nm
Gain Bandwidth0.96nm @1064nm
Refractive Index1.9573(no); 2.1652(ne) @1064nm
1.9721(no); 2.1858(ne) @808nm
2.0210(no); 2.2560(ne) @532nm
Absorption Coefficient31.4 cm-1 @ 808 nm
Absorption Length0.32 mm @ 808 nm
Gain Bandwidth0.96 nm (257 GHz) @ 1064 nm

Absorption and Emission Spectra

Nd YVO4 laser crystal emission spectrum π CRYLINKNd YVO4 laser crystal emission spectrum σ CRYLINK
Nd YVO4 laser crystal absorption spectrum1 CRYLINKNd YVO4 laser crystal absorption spectrum2 CRYLINK


[1]  Hong Z ,  Yang H ,  Zhang Y , et al. Nd:YVO 4 crystal growth by the floating zone method[J]. Journal of Crystal Growth, 1996, 160(1-2):136-140.
[2] Dal, Hoy, Kwon, et al. Growth of Nd-doped YVO4 single crystals along 〈1 0 0〉tetra by the anisotropic heating floating zone method[J]. Journal of Crystal Growth, 2009.
[3]  Lin H Y ,  Copner N ,  Sun D , et al. Dual-wavelength CW a-cut Nd:YVO4 laser at 1064.3 and 1066.7nm[J]. OPTIK -STUTTGART-, 2016.
[4]  Lin H Y ,  Sun D ,  Huang X H , et al. Continuous-wave dual-wavelength Nd:YVO4 laser at 1066.4nm and 1083.8nm[J]. Optik – International Journal for Light and Electron Optics, 2016, 127(11):4824-4825.
[5]  Zhuang Z ,  Tao L ,  Li X , et al. Investigation of Nd:YVO4/YVO4 composite crystal and its laser performance pumped by a fiber coupled diode laser[J]. Optics Communications, 2007, 274(1):176-181.
[6] H.F. Lin and W.Z. Zhu and F.B. Xiong and R.Z. Mu and Y.Q. Huang. A high polarization microchip green laser with dual Nd:YVO4 crystal[J]. Optics & Laser Technology, 2012.
[7]  Zhang H ,  Liu J ,  Wang J , et al. Laser properties of different Nd-doped concentration Nd:YVO 4 laser crystals[J]. Optics & Lasers in Engineering, 2002, 38(6):527-536.
[8]  Li S ,  Li Y ,  Zhao S , et al. Thermal effect investigation and passively Q-switched laser performance of composite Nd:YVO4 crystals[J]. Optics & Laser Technology, 2015, 68:146-150.
[9]  Sugiyama A ,  Nara Y . Improved direct bonding method of Nd:YVO and YVO laser crystals[J]. Ceramics International, 2005, 31(8):1085-1090.
[10]  Meng X ,  Li Z ,  Zhang H . Growth, morphology and laser performance of Nd:YVO4 crystal[J]. Journal of Crystal Growth, 1999, 200(1/2):199-203.
[11]  Zhang H ,  Meng X ,  Li Z , et al. Growth, spectra and influence of annealing effect on laser properties of Nd:YVO 4 crystal[J]. Optical Materials, 2000, 14(1):25-30.
[12]  Lian Z ,  Peng L ,  Liu T , et al. Optical properties of planar waveguide in Nd:YVO4 crystal formed by swift Kr8+ ion irradiation[J]. Nuclear Instruments and Methods in Physics Research Section B Beam Interactions with Materials and Atoms, 2013, 307(8):459-462.
[13]  Ma Y J , F Lu,  Yin J J , et al. Radiation damage study of MeV ions-implanted Nd:YVO4 crystal[J]. Materials Science and Engineering: B, 2013, 178(20):1464-1468.
[14] Alfred, R, Forbes, et al. The hydrothermal synthesis, solubility and crystal growth of YVO4 and Nd:YVO4[J]. Journal of Crystal Growth, 2008, 310(20):4472-4476.
[15]  Wang Z ,  Sun L ,  Zhang S , et al. Investigation of LD end-pumped Nd:YVO 4 crystals with various doping levels and lengths[J]. Optics & Laser Technology, 2001, 33(1):47-51.
[16]  G. V , Vázquez, and, et al. Analysis of ion implanted waveguides formed on Nd:YVO4 crystals – ScienceDirect[J]. Optics Communications, 2004, 240(4-6):351-355.
[17]  Huang C H ,  Chen J C . Nd : YVO4 single crystal fiber growth by the LHPG method[J]. Journal of Crystal Growth, 2001, 229:184–187.
[18]  Zhang H ,  Fang H S ,  Zheng L L , et al. Nd:YVO4 crystal growth by Czochralski technique with a submerged plate[J]. Journal of Crystal Growth, 2009, 311(22):4652-4659.
[19]  Shur J W ,  Kochurikhin V V ,  Borisova A E , et al. Photoluminescence properties of Nd:YVO 4 single crystals by multi-die EFG method[J]. Optical Materials, 2004, 26(4):347-350.
[20] S. Erdei and B.M. Jin and F.W. Ainger and B. Keszei and J. Vandlik and A. Süveges. Possible trends for the growth of low scattering Nd:YVO4 laser crystals; phase relations — growth techniques[J]. Journal of Crystal Growth, 1997.
[21]  Hu B Q ,  Zhang Y Z ,  Wu X , et al. Defects in large single crystals Nd : YVO 4[J]. Journal of Crystal Growth, 2001, 226(4):511-516.
[22]  Goutaudier C ,  Ermeneux F S ,  Cohen-Adad M T , et al. LHPG and FLUX growth of various Nd:YVO4 single crystals: A comparative characterization[J]. Materials Research Bulletin, 1998, 33(10):1457-1465.
[23] Hur,  M. G , Yang, et al. Optical properties of EFG grown Nd:YVO4 single crystals dependent on Nd concentration.[J]. Journal of Crystal Growth, 2002.
[24]  Nakamura K ,  Kasahara K ,  Sato M , et al. Interferometric studies on a diode-pumped Nd:YVO 4 laser with frequency-shifted feedback[J]. Optics Communications, 1995, 121(4-6):137-140.
[25]  Helen Y ,  Dassow R ,  Nerding M , et al. High mobility thin film transistors by Nd:YVO4-laser crystallization[J]. Thin Solid Films, 2001, 383(1-2):143-146.
[26]  Watanabe S ,  Nakamura O ,  Kochurikhin V V , et al. Growth of Nd:YVO 4 single-crystal plates by the edge-defined, film-fed growth technique[J]. Journal of Crystal Growth, 2007, 305(1):181-184.
[27] MD Wei,  Hsu C C . Numerical study of nonlinear dynamics in a pump-modulation Nd:YVO4 laser with humped modulation profile[J]. Optics Communications, 2012, 285(6):1366-1370.
[28]  Chen Y ,  Wu E ,  Zhang S , et al. A novel ring laser resonator of linear geometry with twin off-axially cut Nd:YVO4[J]. Optics Communications, 2003, 220(1-3):179-186.

Related case study with Nd:YVO4:

Related solution(s) with Nd:YVO4:

Related video(s) with Nd:YVO4:

There is no related video(s), please visit videos page to find out more.

Scroll to Top